skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buscarnera, Giuseppe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A rheological model for loose granular media is developed to capture both solid-like and fluid-like responses during shearing. The proposed model is built by following the mathematical structure of an extended Kelvin–Voigt model, where an elastic spring and plastic slider act in parallel to a viscous damper. This arrangement requires the partition of the total stress into rate-independent and rate-dependent stress components. To model the solid-like behavior, a simple frictional plasticity model is adopted without modifications, thus contributing to the rate-independent stress. Instead, the fluid-like or rate-dependent stress is further decomposed into deviatoric and volumetric parts, by proposing a new formulation based on a combination of the m(I) relation, originally developed under pressure-controlled shear, with a pressure-shear rate relation derived under volume-controlled shear. The proposed formulation allows the model to capture both the increase in the friction coefficient and the enhanced dilation at high shear rates. High-fidelity simulation data, obtained from discrete element method and multiscale modelling, are used to evaluate the performance of the proposed constitutive model. The model provides accurate results under both drained and undrained simple shear paths across a wide range of shear rates. Furthermore, it successfully reproduces at much lower computational cost the flowslide mobility computed through multiscale simulations, which is primarily regulated by the shear rate dependence of the material properties during the dynamic runout stage. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available February 27, 2026
  3. Free, publicly-accessible full text available November 1, 2025
  4. This paper derives a closed-form criterion to assess the risk of flowslide runout in loose frictional soil. The derivations rely on a recently proposed framework to simulate pre- and post-failure motion in infinite slopes. An analytical solution of the coupled differential equations capturing flowslide hydromechanics is obtained by specifying them for a perfectly plastic constitutive law. This result enables a comprehensive examination of the factors that control whether the landslide motion, once triggered, autonomously comes to rest (self-regulating behaviour with low mobility) or continues to propagate (self-feeding behaviour with high mobility). It is found that the time history of motion is regulated by non-dimensional property groups reflecting the timescale of excess pore pressure dissipation and the inertial properties of the liquefied zone, which are in turn governed by material (e.g. hydraulic conductivity, dilation coefficient, elastic moduli) and slope properties (e.g. thickness, inclination). The solution is used to build charts identifying the critical ranges of soil properties and triggering factors that differentiate between high-mobility and low-mobility flowslides. Most importantly, it is shown that the fate of flowslide motions is predicted by a critical ratio expressed in terms of excess pore pressure and flow velocity, here defined as the factor of mobility, FM, with values above 1 indicating a self-feeding runout. 
    more » « less
  5. Abstract A hierarchical multiscale modeling framework is proposed to simulate flowslide triggering and runout. It couples a system‐scale sliding‐consolidation model (SCM) resolving hydro‐mechanical feedbacks within a flowslide with a local‐scale solver based on the discrete element method (DEM) replicating the sand deformation response in the liquefied regime. This coupling allows for the simulation of a seamless transition from solid‐ to fluid‐like behavior following liquefaction, which is controlled by the grain‐scale dynamics. To investigate the role of grain‐scale interactions, the DEM simulations replace the constitutive model within the SCM framework, enabling the capture of the emergent rate‐dependent behavior of the sand during the inertial regime of motion. For this purpose, a novel algorithm is proposed to ensure the accurate passage of the strain rate from the global analysis to the local DEM solver under both quasi‐static (pre‐triggering) and dynamic (post‐triggering) regimes of motion. Our findings demonstrate that the specifics of the coupling algorithm do not bear significant consequences to the triggering analysis, in that the grain‐scale dynamics is negligible. By contrast, major differences between the results obtained with traditional algorithms and the proposed algorithm are found for the post‐triggering stage. Specifically, the existing algorithms suffer from loss of convergence and require proper numerical treatment to capture the micro‐inertial effects arising from the post‐liquefaction particle agitation responsible for viscous‐like effects that spontaneously regulate the flowslide velocity. These findings emphasize the important role of rate‐dependent feedback for the analysis of natural hazards involving granular materials, especially for post‐failure propagation analysis. 
    more » « less
  6. Abstract Landslide motion is often simulated with interface‐like laws able to capture changes in frictional strength caused by the growth of the pore water pressure and the consequent reduction of the effective stress normal to the plane of sliding. Here it is argued that, although often neglected, the evolution of all the 3D stress components within the basal shear zone of landslides also contributes to changes in frictional strength and must be accounted for to predict changes in seasonal velocity. For this purpose, an augmented sliding‐consolidation model is proposed which allows for the computation of excess pore pressure development and downslope sliding with any constitutive law with 3D stress evolution. Simulations of idealised infinite slope models subjected to hydrologic forcing are used to study the role of in‐situ stress conditions and stress rate multiaxiality. Specifically, a Drucker‐Prager perfectly plastic model is used to replicate frictional failure and shear deformation at the base of landslides. The model reveals that conditions amenable to the shearing of a frictional interface are met only after numerous rainfall cycles, that is, when multiaxial stress rates are suppressed. In this case, the landslide is predicted to move through a seasonal ratcheting controlled only by the effective stress component normal to the plane of sliding. By contrast, in newly formed landslides, the multiaxial stress evolution is found to produce further regimes of motion, from plastic shakedown to cyclic failure, neither of which can be captured by interface‐like frictional laws. Notably, the model suggests that a transition across these regimes can emerge in response to an aggravation of the magnitude of forcing, implying that (i) fluctuations in climate may alter the seasonal trends of motion observed today; (ii) our ability to quantify landslide‐induced risks is impaired unless proper geomechanical models are used to examine their long‐term dynamics. 
    more » « less
  7. ABSTRACT Strongly anisotropic geomaterials, such as layered shales, have been observed to undergo fracture under compressive loading. This paper applies a phase‐field fracture model to study this fracture process. While phase‐field fracture models have several advantages—primarily that the fracture path is not predetermined but arises naturally from the evolution of a smooth non‐singular damage field—they provide unphysical predictions when the stress state is complex and includes compression that can cause crack faces to contact. Building on a recently developed phase‐field model that accounts for compressive traction across the crack face, this paper extends the model to the setting of anisotropic fracture. The key features of the model include the following: (1) a homogenized anisotropic elastic response and strongly anisotropic model for the work to fracture; (2) an effective damage response that accounts consistently for compressive traction across the crack face, that is derived from the anisotropic elastic response; (3) a regularized crack normal field that overcomes the shortcomings of the isotropic setting, and enables the correct crack response, both across and transverse to the crack face. To test the model, we first compare the predictions to phase‐field fracture evolution calculations in a fully resolved layered specimen with spatial inhomogeneity, and show that it captures the overall patterns of crack growth. We then apply the model to previously reported experimental observations of fracture evolution in laboratory specimens of shales under compression with confinement, and find that it predicts well the observed crack patterns in a broad range of loading conditions. We further apply the model to predict the growth of wing cracks under compression and confinement. Prior approaches to simulate wing cracks have treated the initial cracks as an external boundary, which makes them difficult to apply to general settings. Here, the effective crack response model enables us to treat the initial crack simply as a nonsingular damaged zone within the computational domain, thereby allowing for easy and general computations. 
    more » « less